On Topological and Linear Homeomorphisms of Certain Function Spaces
نویسندگان
چکیده
Let X be a countable metric space which is not locally compact. We prove that the function space C,,(X) is homeomorphic to rr,, We also give examples of countable metric spaces X and Y which are not locally compact and such that C,,(X) and C,,(Y) are not linearly homeomorphic.
منابع مشابه
On the dual of certain locally convex function spaces
In this paper, we first introduce some function spaces, with certain locally convex topologies, closely related to the space of real-valued continuous functions on $X$, where $X$ is a $C$-distinguished topological space. Then, we show that their dual spaces can be identified in a natural way with certain spaces of Radon measures.
متن کاملSome properties of continuous linear operators in topological vector PN-spaces
The notion of a probabilistic metric space corresponds to thesituations when we do not know exactly the distance. Probabilistic Metric space was introduced by Karl Menger. Alsina, Schweizer and Sklar gave a general definition of probabilistic normed space based on the definition of Menger [1]. In this note we study the PN spaces which are topological vector spaces and the open mapping an...
متن کاملBoundedness and Continuity of Fuzzy Linear Order-Homomorphisms on $I$-Topological\ Vector Spaces
In this paper, a new definition of bounded fuzzy linear orderhomomorphism on $I$-topological vector spaces is introduced. Thisdefinition differs from the definition of Fang [The continuity offuzzy linear order-homomorphism. J. Fuzzy Math. {bf5}textbf{(4)}(1997), 829--838]. We show that the ``boundedness"and `` boundedness on each layer" of fuzzy linear orderhomomorphisms do not imply each other...
متن کاملOn $beta-$topological vector spaces
We introduce and study a new class of spaces, namely $beta-$topological vector spaces via $beta-$open sets. The relationships among these spaces with some existing spaces are investigated. In addition, some important and useful characterizations of $beta-$topological vector spaces are provided.
متن کاملNew best proximity point results in G-metric space
Best approximation results provide an approximate solution to the fixed point equation $Tx=x$, when the non-self mapping $T$ has no fixed point. In particular, a well-known best approximation theorem, due to Fan cite{5}, asserts that if $K$ is a nonempty compact convex subset of a Hausdorff locally convex topological vector space $E$ and $T:Krightarrow E$ is a continuous mapping, then there exi...
متن کامل